UMagazine_22

學術研究•ACADEMIC RESEARCH 澳大新語•2020 UMAGAZINE 22 57 CMOS as a Transformative Technology Aside from the applications for computing and communications, CMOS technology is also useful in multidisciplinary research, which leverages the advantages of CMOS ICs to further exploration of science. The compact and versatile ICs can be customised to befit a wealth of applications, rendering it a powerful solution for scientific research. Nuclear Magnetic Resonance (NMR) is an essential method to observe the molecular information and dynamics of the samples in the laboratory. It plays a crucial role in chemistry, physics, and biology. Five Nobel Prizes (in Chemistry, Physics, and Physiology or Medicine) have been awarded to NMR-related development, manifesting the significance of NMR in scientific research. The equipment for the NMR experiment mainly includes a magnet that generates a static magnetic field to magnetise the nuclei for interest (1H in our platform), a radio-frequency coil to couple between the magnetic field for the nuclei and electrical signal for the electronics, and transceiver (transmitter + receiver) electronics to excite the nuclei and record their responses for subsequent analysis. Conventional NMR equipment is bulky and heavy because it employs a superconducting magnet to generate an intense magnetic field (> 1 Tesla) for magnetisation. Also, the discrete electronics occupy a significant area and consume a large amount of power. Recently, there is a thrust to miniaturise the hardware of NMR equipment by using a permanent magnet (< 0.5 Tesla) and a customised CMOS IC to replace the superconducting magnet and the discrete electronics. While the conventional NMR equipment provides unparalleled resolution for delicate analysis such as fingerprinting the macromolecules, the slim footprints of the miniaturised NMR systems open up a lot of potential NMR applications such as well-logging and on-site chemical screening. Our CMOS NMR Platform Our research team at the State Key Laboratory of Analog and Mixed-Signal VLSI at UM has been working on the miniaturisation of the NMR system over the past eight years and has developed different generations of portable NMR systems. Each generation has its respective innovation. For example, the first generation of the miniaturised NMR system focuses on automated CMOS科技所帶來的變革 CMOS科技所帶來的變革不只影響計算 和通訊範疇,它也能在跨學科研究上派 上用場。憑著其小巧之體積及用途多樣 之優勢,經過客製化之CMOS芯片可成 為貢獻科研的利器。 核磁共振是一種在實驗室觀察樣本的分子 資訊和動態的重要方法,在化學、物理、 生物學和醫學等領域均發揮關鍵作用。與 核磁共振的相關研究及發展至今五度獲頒 諾貝爾獎(分別在物理學、化學、以及生 理學或醫學),在科學界的重要性不言而 喻。核磁共振實驗儀器主要包括一個用來 產生靜態磁場的磁鐵,藉此磁化特定的原 子核(例如在我們平台上分析的1H原子 核)。此外還有一個射頻線圈,用於實現 原子核磁場與電子電訊號的耦合,以及一 個電子收發器,用來激發原子核並記錄相 關反應作後續分析。 一般的核磁共振儀器的體積通常十分龐 大,因為它需要一個超導磁鐵,以產生 超過一特斯拉的磁場,其獨立之電子零 件也會佔用大量空間和消耗不少能量。 為了減低儀器體積,有研究人員最近嘗 試改用少於0.5特斯拉的永久磁鐵取代超 導磁鐵,並改用客製化的CMOS芯片取 代各電子零件。雖然常規核磁共振儀器 在分析大分子時,可以提供無可比擬的 解析度,但體積細小的微型化核磁共振 儀器也有其獨特之潛力,能夠開拓核磁 共振在其他層面的應用,包括井測及實 地化學篩檢。 我們的CMOS核磁共振平台 過去八年,澳大模擬與混合信號超大規 模集成電路國家重點實驗室的團隊致力 開發小型化核磁共振系統,每一代成果 都有其創新之處。我們所研發第一代 之系統整合了數位微流控平台及核磁共 振系統,實現自動化樣本管理(圖一及 二)1。最新一代可攜式系統則是我們 與哈佛大學Donhee Ham教授團隊的合 作成果,通過平行化的核磁共振實驗加 快化學篩檢(圖三),以下會介紹這項 最新研究2。

RkJQdWJsaXNoZXIy MTQ1NDU2Ng==